
STUDY MATERIAL 

Semester -2, Course: CC-4 

 

Topic: Group Theory 

(Some important problems with solutions) 

 

1. Let G be a group and H be a non-empty subset of G. Prove that, if H is a subgroup of G, 

then �� = �. 

    Proof: Let  �  be an arbitrary element in ��. 
               Now, � ∈ �� ⇒ � = �	, �, 	 ∈ �. 

               Since � be a subgroup and �, 	 ∈ �, so �	 ∈ �. 
               Therefore, � ∈ �� ⇒ � ∈ �.  So, �� ⊆ �            (1) 

               Again, let ℎ be an arbitrary element in �. 
               Now, ℎ = ℎ ∈ �� since ℎ ∈ �,  is the identity element of �. 
               Therefore, ℎ ∈ � ⇒ ℎ ∈ ��.  So, � ⊆ ��         (2) 

               From (1) and (2), we have �� = �. 
 

2. Suppose a group contains element �, 	 such that ���� = 4, ��	� = 2 and ��	 = 	�. 
    Find ���	�. 
   Solution: ���� = 4 ⇒ �� =  and ��	� = 2 ⇒ 	� = 2. 
                   Now, ��	 = 	� ⇒ ��	 = �	� ⇒ 	 = �	� ⇒ 	 = �	� ⇒ 		 = �	�	 

                    ⇒ 	� = ��	�� ⇒  = ��	��.  
                  Therefore, ���	� ≤ 2. 
                  Since ���� ≠ ��	�, so � ≠ 	�� [ since ��	� = ��	���] 
                   i.e. �	 ≠ . So, ���	� > 1. i.e. 1 < ���	� ≤ 2. 
                   Therefore, ���	� = 2. 
 

3. Let ��, �� be group. Prove that a non-empty subset � of � forms a subgroup of ��, �� if 

and only if � ∈ �, 	 ∈ � ⇒ ��	�� ∈ �. 
    Proof:  S.K. Mapa, Th.2.11.3. 

 

4. Prove that the semigroup ��, �� is a non-commutative group 

    where � = ���, 	� ∈  ×  : � ≠ 0$ and the composition ‘�’ is defined by  

    ��, 	���%, &� = ��%, �& + 	� for ��, 	�, �%, &� ∈ �.   is the set of rational numbers.   
Proof: Since ��, �� is a semigroup, so  � is closed under the binary operation ‘�’ and ‘�’ is 

associative in the algebraic structure ��, ��. 



�1,0� ∈ �.  
Now, ��, 	���1,0� = ��, 	� and �1,0����, 	� = ��, 	� ∀ ��, 	� ∈ �. 
Therefore, �1,0� is the identity element in � under the binary composition ‘�’. 

Let for any element ��, 	� in �, ∃ an element �%, &� in � such that ��, 	���%, &� = �1,0� 

i.e. ��%, �& + 	� = �1,0� ⇒ �% = 1, �& + 	 = 0. 

Therefore, % = �
*  and & = − ,

*, since � ≠ 0. So, �%, &� = -�
* , − ,

*. ∈  ×  . 

Therefore, ��, 	�� -�
* , − ,

*. = �1,0�. Also -�
* , − ,

*. ���, 	� = �1,0�. 

So, -�
* , − ,

*. be the inverse of ��, 	�. i.e. inverse property is satisfied. 

Commutativity:  Let ��, 	�, �%, &� ∈ �. 
                      Now, ��, 	���%, &� = ��%, �& + 	� and �%, &����, 	� = �%�, 	% + &�. 
                      But �	 + 	 ≠ 	% + & in general. 

                      For example, let �1,2�, �3,4� ∈ �. 
                       Now, �1,2���3,4� = �3,6� and �3,4���1,2� = �3,10�. 
                      Therefore, ��, 	���%, &� ≠ �%, &����, 	� ∀ ��, 	�, �%, &� ∈ �. 
 

5. Let � be an abelian group. Prove that the subset � = �1 ∈ �: 1� =  �identity element$ 

forms a subgroup of �. 
    Proof: Since  ∈ � and � = , so  ∈ �. 
              Therefore, � is non-empty. 

              Let �, 	 be two arbitrary element in H. 

             So, �, 	 ∈ � and �� = , 	� = . 
              �, 	 ∈ � ⇒ �	�� ∈ �, since � is a group. 

              Now, ��	���� = ��	�����	��� = ��	����	�� = ���	���	��, since G is abelian 

                                = ���	���� = ���	���� = �� = . 
               So, �, 	 ∈ � ⇒ �	�� ∈ �. 
               Therefore, � is a subgroup of �. 
 

6. Prove that a finite semigroup in which both the cancellation laws hold is a group. Does the 

theorem hold if the semigroup be infinite? 

   Proof: S.K. Mapa, Th. 2.7.7. 

 

7. Let : be the set of all real numbers except the integer 1. Let the operation ‘∗’ be defined by 

� ∗ 	 = � + 	 − �	 for all �, 	 ∈ :. Show that �:,∗� is a group. 



   Solution: (i) Closure Property: Let �, 	 ∈ :. 
      So, � and 	 are two real numbers and � ≠ 1, 	 ≠ 1. 
      Now, � ∗ 	 = � + 	 − �	 which is a real number and � + 	 − �	 ≠ 1, because 

      � + 	 − �	 = 1 ⇒ 	�1 − �� = 1 − � ⇒ 	 = 1, since � ≠ 1. But 	 ≠ 1. 
 

     Therefore, � ∗ 	 is a real number and � ∗ 	 ≠ 1. So, � ∗ 	 ∈ :  ∀ �, 	 ∈ :. 
      Hence : is closed under t6he binary operation ‘∗’. 

    (ii) Associative Property: Let �, 	, % ∈ :, where �, 	, % ∈ < and � ≠ 1, 	 ≠ 1, % ≠ 1. 
         Now, � ∗ �	 ∗ %� = � ∗ �	 + % − 	%� = � + 	 + % − 	% − ��% + % − 	%� 

                                                                     = � + 	 + % − 	% − �	 − �% + �	%. 
         �� ∗ 	� ∗ % = �� + 	 − 	%� ∗ % = � + 	 − 	% + % − �� + 	 − �	�% 

                                                           = � + 	 + % − �	 − �% − 	% + �	%. 
       Therefore, � ∗ �	 ∗ %� = �� ∗ 	� ∗ %  ∀  �, 	, % ∈ :. 
        So, associative property is satisfied w.r.t. the binary operation ‘∗’. 

    (iii) Identity Property: 0 ∈ :. 
          Now, 0 ∗ � = 0 + � − 0. � = � ∀ � ∈ :. 
          So 0 is the left identity element in : under the binary operation ‘∗’. 

    (iv) Inverse Property: Let 	 be an element in : such that 	 ∗ � = 0. 
          Now, 	 ∗ � = 0 ⇒ 	 + � − 	� = 0 ⇒ 	�1 − �� = −� ⇒ 	 = *

*��, since � ≠ 1. 

         Since 
*

*�� is a real number as � ≠ 1 and 
*

*�� ≠ 1, so 	 = *
*�� ∈ :. 

         Therefore, for any element � in :, ∃ an element  
*

*�� in : such that 
*

*�� ∗ � = 0. 

         So, 
*

*�� is the left 0-inverse in : under the binary operation ‘∗’.  

        Therefore, �:,∗� is a group. 

 

8. Let ��, �� be a group and �, 	 ∈ �. If ���� = 3 and ��	���� = 	�, find the order of 	 if 	 

is not the identity element of �. 
    Solution: ��	���� = 	� ⇒ ���	���� = ��	����� 

              = ���	���������	�����, since ‘�’ is associative. 

            = 	��	� = 	�  

          ⇒ ���	���� = ��	����� = ���	���������	���������	���������	����� 

                                                 = 	��	��	��	� = 	= 

         or,   	 = 	= ⇒ 	@ = . 

        Since 	 ≠  and 7 is prime, so ��	� = 7. 



 

9. Prove that the union of two subgroup �, B of a group ��,∗� forms a subgroup if and only if 

either � ⊂ B or B ⊂ �. 
    Proof:  S.K. Mapa, Th. 2.11.6. 

 

10. Let � be a group. Let D��� be a subset of � defined by D��� = �� ∈ �: �� = �� ∀ � ∈ �$. 

Prove that D��� is a subgroup of G. 

    Proof:  S.K. Mapa, Example: 1, Page-111. 

 

11. Let �E, . � be a semigroup. If for �, F ∈ E, ��F = F = F��,  prove that �E, . � is an abelian 

group. 

     Proof:  S.K. Mapa, Example: 3, Page-83. 

 

12. Prove that in a groupoid �D, −� there is no left identity, but 0 is a right identity. 

     Solution: Let �, 	 ∈ D. 
     Now, �, 	 ∈ D ⇒ � − 	 ∈ D  ∀ �, 	 ∈ D. 
     So, �D, −� is a groupoid. 

     Again, � − 0 = � ∀� ∈ D. So 0 is the right identity in D with respect to the binary 

operation ‘−‘. 

     Now, 	 − � = � ⇒ 	 = 2�. So for different � in D, ∃ different 	 in D such that 

      	 − � = �. So 	 is not the left identity in �D, −�. i.e. �D, −� has no left identity. 

 

13.  Show that the set of complex numbers � + G	 (where G� = −1� for �� + 	� = 1 is a 

group under the multiplication of complex numbers. 

    Solution:  Let H = �I = � + G	: �� + 	� = 1 G. .  |I| = 1$. 

     (i) Closure Property: Let I�, I� ∈ H. So |I�| = 1, |I�| = 1. 

         Therefore, I�I� is also a complex number and |I�I�| = |I�||I�|. 
         So, I�I� ∈ H ∀ I�, I� ∈ H. i.e. H is closed under the multiplication of complex numbers. 

    (ii) Associative Property: Multiplication of complex numbers is associative. 

    (iii) Identity Property: 1 = 1 + 0. G ∈ H and 1. I = I. 1 = I  ∀I ∈ H. 
          Therefore, 1 is the multiplicative identity element in H. 
    (iv) Inverse Property: Let I be an arbitrary element in H. So I ≠ 0 and |I| = 1. 

          Since I ≠ 0, so 
�
K is also a complex number and L�

KL = 1. Therefore, 
�
K ∈ H. 

         Now, I. �
K = �

K . I = 1. 



    Therefore, 
�
K is the multiplicative inverse of I in H. 

     Since I is arbitrary, so each element in H has a multiplicative inverse in H. So inverse 

property is satisfied. 

     Therefore, the set of complex numbers � + G	 for �� + 	� = 1 is a group under the 

multiplication of complex numbers. 

 

14. If 	 be an element of a group and order of 	 is 20, find the order of 	�M. 

      Solution: ��	�M� = N�,�
OPQ��R,�M� = �R

M = 4. 

 

15. Give an example of a finite group whose each element other than the identity has the same 

order and also the order of the group is not a prime number. 

     Solution: The Klein’s 4-group is a finite group of order 4 which is not prime and the order 

of each non-identity element is two. 

16. Prove or disprove: The set D of all odd integers forms a commutative group with respect to 

the binary operation ‘�’ defined by  ��	 = � + 	 − 1 for �, 	 ∈ S. 
 Solution: 

   i) Closure property: Let �, 	 ∈ S. Since � and 	 are odd integers, so � + 	 − 1 is  also an    

odd integer.  

    Therefore, ��	 = � + 	 − 1 ∈ S, ∀ �, 	 ∈ S. i.e. S is closed with respect to the binary   

operation ‘�’. 

   (ii) Associative property: Let �, 	, % ∈ S. 
          Now, ���	�%� = ���	 + % − 1� = � + 	 + % − 1 − 1 = � + 	 + % − 2 

               ���	��% = �� + 	 − 1��% = � + 	 − 1 + % − 1 = � + 	 + % − 2 

    Therefore, ���	�%� = ���	��%  ∀�, 	, % ∈ S. So the binary operation ‘�’ is associative  

in D. 

  (iii) Identity property: 1 ∈ S. 
        Now, ��1 = � + 1 − 1 = � = 1�� ∀� ∈ S. 
        So 1 is the identity element in S under the binary operation ‘�’. 

   (iv) Inverse property:  If � ∈ S, then 2 − � ∈ S, since 2 − � is odd as � is odd. 

         Now, ���2 − �� = � + 2 − � − 1 = 1 and �2 − ���� = 2 − � + � − 1 = 1. 
        Therefore, for each element � ∈ S, there exists an element 2 − � in S such that 

        ���2 − �� = �2 − ���� = 1. So 2 − �  is the inverse of � under the binary operation ‘�’. 

   �v� Commutativity: Let �, 	 ∈ S. 
         ��	 = � + 	 − 1 = 	 + � − 1 = 	��  ∀�, 	 ∈ S. 



       Therefore, �S, �� is a commutative group. 

 

17. Give an example of an infinite group whose every element is of finite order. 

    Solution: Let D be the set of integers and :�D� be the power set of D. 
    Therefore, :�D� is an infinite set. 

    Now, define the binary operation ‘∗’ as U ∗ V = U∆V, U, V ∈ :�D�. 
   Then �:�D�,∗� be a group under the binary operation ‘∗’. (Proof of this part is discussed in 

the class). 

   Here, ∅ ∈ :�D� and ∅ be the identity element in :�D� under the operation ‘∗’ because 

   U ∗ ∅ = U∆∅ = U = ∅∆U = ∅ ∗ U ∀∈ :�D�. 
   Also U ∗ U = U∆U = ∅. So every element is the self inverse with respect to the operation ‘∗’. 

    i.e. U� = U ∗ U = ∅, U ≠ ∅. 
   Therefore, ��U� = 2  ∀ U�≠ ∅� ∈ :�D� and ��∅� = 1. 
    Hence �:�D�,∗� is an infinite group whose every element is of finite order. 

 

18. Show that U�, the set of even permutations of �1,2,3$ is a cyclic group with respect to the 

product of permutations. Find a generator of this cyclic group. Answer with reason. 

   Solution:  The set of even permutations of �1,2,3$ is U� = �YR, Y�, Y�$ where 

   YR = -1 2 3
1 2 3.,  Y� = -1 2 3

2 3 1., Y� = -1 2 3
3 1 2.. 

 

   Find the composition table and prove that the set U�, the set of even permutations of �1,2,3$ 

is a commutative group with respect to the product of permutations. 

 The order of this group is 3 and since 3 is a prime number, so U� is a cyclic group. 

  Since ��Y�� = 3 and ��U�� = 3, so Y� is a generator of this group. 

 

19. Let � = -1 2 3   4
3 1 2    4.. Find the smallest positive integer Z such that �[ =  in E�. 

    Solution: E� is the symmetric group with respect to the multiplication of permutations of the 

set �1,2,3,4$ and  be the identity element in E�. 

    Now, � = -1 2 3   4
3 1 2    4. = �1 3 2� which is a cycle of length 3. 

   So ���� = 3. 
    Therefore, 3 is the least positive integer such that �� =  in E�. 
 

20. Define permutation group. Give an example. 



   Definition: Let E = ���, ��, ��, … … … , �]$ be a finite set. 

     A bijective mapping ^: E → E is said to be a permutation on E. The number of such bijective 

mappings is `!. Let E] be the set of all such permutations. Then the set E] forms a group 

with respect to the multiplication of permutations. This group is called permutation group. 

   Example: Let E = �1, 2$. Therefore, E� = �YR, Y�$ where YR = -1 2
1 2. and Y� = -1 2

2 1.. 

   Consider the composition table and verify that �E�, . � is a permutation group. 

 

  

 


