STUDY MATERIAL Semester -2, Course: CC-4

Topic: Group Theory (Some important problems with solutions)

1. Let G be a group and H be a non-empty subset of G. Prove that, if H is a subgroup of G, then HH = H.

Proof: Let x be an arbitrary element in HH. Now, $x \in HH \Rightarrow x = ab, a, b \in H$. Since H be a subgroup and $a, b \in H$, so $ab \in H$. Therefore, $x \in HH \Rightarrow x \in H$. So, $HH \subseteq H$ (1) Again, let h be an arbitrary element in H. Now, $h = he \in HH$ since $h \in H, e$ is the identity element of H. Therefore, $h \in H \Rightarrow h \in HH$. So, $H \subseteq HH$ (2) From (1) and (2), we have HH = H.

2. Suppose a group contains element *a*, *b* such that o(a) = 4, o(b) = 2 and $a^3b = ba$. Find o(ab).

Solution: $o(a) = 4 \Rightarrow a^4 = e$ and $o(b) = 2 \Rightarrow b^2 = 2$. Now, $a^3b = ba \Rightarrow a^4b = aba \Rightarrow eb = aba \Rightarrow b = aba \Rightarrow bb = abab$ $\Rightarrow b^2 = (ab)^2 \Rightarrow e = (ab)^2$. Therefore, $o(ab) \le 2$. Since $o(a) \ne o(b)$, so $a \ne b^{-1}$ [since $o(b) = o(b^{-1})$] i.e. $ab \ne e$. So, o(ab) > 1. i.e. $1 < o(ab) \le 2$. Therefore, o(ab) = 2.

- 3. Let (G, o) be group. Prove that a non-empty subset H of G forms a subgroup of (G, o) if and only if a ∈ H, b ∈ H ⇒ aob⁻¹ ∈ H.
 Proof: S.K. Mapa, Th.2.11.3.
- 4. Prove that the semigroup (G, o) is a non-commutative group where G = {(a, b) ∈ Q × Q: a ≠ 0} and the composition 'o' is defined by (a, b)o(c, d) = (ac, ad + b) for (a, b), (c, d) ∈ G. Q is the set of rational numbers.
- **Proof:** Since (G, o) is a semigroup, so G is closed under the binary operation 'o' and 'o' is associative in the algebraic structure (G, o).

 $(1,0) \in G.$ Now, (a,b)o(1,0) = (a,b) and $(1,0)o(a,b) = (a,b) \forall (a,b) \in G.$ Therefore, (1,0) is the identity element in *G* under the binary composition 'o'. Let for any element (a,b) in *G*, \exists an element (c,d) in *G* such that (a,b)o(c,d) = (1,0)i.e. $(ac, ad + b) = (1,0) \Rightarrow ac = 1$, ad + b = 0. Therefore, $c = \frac{1}{a}$ and $d = -\frac{b}{a}$, since $a \neq 0$. So, $(c,d) = (\frac{1}{a}, -\frac{b}{a}) \in Q \times Q.$ Therefore, $(a,b)o(\frac{1}{a}, -\frac{b}{a}) = (1,0)$. Also $(\frac{1}{a}, -\frac{b}{a})o(a,b) = (1,0)$. So, $(\frac{1}{a}, -\frac{b}{a})$ be the inverse of (a,b). i.e. inverse property is satisfied. **Commutativity:** Let $(a,b), (c,d) \in G.$ Now, (a,b)o(c,d) = (ac,ad + b) and (c,d)o(a,b) = (ca,bc + d). But $ab + b \neq bc + d$ in general. For example, let $(1,2), (3,4) \in G.$ Now, (1,2)o(3,4) = (3,6) and (3,4)o(1,2) = (3,10). Therefore, $(a,b)o(c,d) \neq (c,d)o(a,b) \forall (a,b), (c,d) \in G.$

5. Let *G* be an abelian group. Prove that the subset $H = \{g \in G : g^2 = e \text{ (identity element}\}\$ forms a subgroup of *G*.

Proof: Since $e \in G$ and $e^2 = e$, so $e \in H$. Therefore, H is non-empty. Let a, b be two arbitrary element in H. So, $a, b \in G$ and $a^2 = e, b^2 = e$. $a, b \in G \Rightarrow ab^{-1} \in G$, since G is a group. Now, $(ab^{-1})^2 = (ab^{-1})(ab^{-1}) = a(b^{-1}a)b^{-1} = a(ab^{-1})b^{-1}$, since G is abelian $= a^2(b^{-1})^2 = a^2(b^2)^{-1} = ee^{-1} = e$. So, $a, b \in H \Rightarrow ab^{-1} \in H$. Therefore, H is a subgroup of G.

- 6. Prove that a finite semigroup in which both the cancellation laws hold is a group. Does the theorem hold if the semigroup be infinite?Proof: S.K. Mapa, Th. 2.7.7.
- 7. Let *P* be the set of all real numbers except the integer 1. Let the operation '*' be defined by a * b = a + b ab for all $a, b \in P$. Show that (*P*,*) is a group.

Solution: (i) **Closure Property:** Let $a, b \in P$.

So, *a* and *b* are two real numbers and $a \neq 1, b \neq 1$.

Now, a * b = a + b - ab which is a real number and $a + b - ab \neq 1$, because $a + b - ab = 1 \Rightarrow b(1 - a) = 1 - a \Rightarrow b = 1$, since $a \neq 1$. But $b \neq 1$.

Therefore, a * b is a real number and $a * b \neq 1$. So, $a * b \in P \forall a, b \in P$.

Hence *P* is closed under t6he binary operation '*'.

(ii) Associative Property: Let $a, b, c \in P$, where $a, b, c \in R$ and $a \neq 1, b \neq 1, c \neq 1$. Now, a * (b * c) = a * (b + c - bc) = a + b + c - bc - a(c + c - bc)= a + b + c - bc - ab - ac + abc.

$$(a * b) * c = (a + b - bc) * c = a + b - bc + c - (a + b - ab)c$$

= $a + b + c - ab - ac - bc + abc$.

Therefore, $a * (b * c) = (a * b) * c \forall a, b, c \in P$.

So, associative property is satisfied w.r.t. the binary operation '*'.

(iii) Identity Property: $0 \in P$.

Now, 0 * a = 0 + a - 0. $a = a \forall a \in P$.

So 0 is the left identity element in P under the binary operation '*'.

(iv) **Inverse Property:** Let *b* be an element in *P* such that b * a = 0.

Now, $b * a = 0 \Rightarrow b + a - ba = 0 \Rightarrow b(1 - a) = -a \Rightarrow b = \frac{a}{a-1}$, since $a \neq 1$. Since $\frac{a}{a-1}$ is a real number as $a \neq 1$ and $\frac{a}{a-1} \neq 1$, so $b = \frac{a}{a-1} \in P$. Therefore, for any element a in P, \exists an element $\frac{a}{a-1}$ in P such that $\frac{a}{a-1} * a = 0$. So, $\frac{a}{a-1}$ is the left 0-inverse in P under the binary operation '*'. Therefore, (P, *) is a group.

8. Let (G, o) be a group and $a, b \in G$. If o(a) = 3 and $aoboa^{-1} = b^2$, find the order of b if b is not the identity element of G.

Solution: $aoboa^{-1} = b^2 \Rightarrow a^2 oboa^{-2} = aob^2 oa^{-1}$ $= (aoboa^{-1})o(aoboa^{-1}), \text{ since 'o' is associative.}$ $= b^2 ob^2 = b^4$ $\Rightarrow a^3 oboa^{-3} = aob^4 oa^{-1} = (aoboa^{-1})o(aoboa^{-1})o(aoboa^{-1})o(aoboa^{-1})$ $= b^2 ob^2 ob^2 ob^2 = b^8$

or, $b = b^8 \Rightarrow b^7 = e$.

Since $b \neq e$ and 7 is prime, so o(b) = 7.

- 9. Prove that the union of two subgroup H, K of a group (G,*) forms a subgroup if and only if either H ⊂ K or K ⊂ H.
 Proof: S.K. Mapa, Th. 2.11.6.
- 10. Let G be a group. Let Z(G) be a subset of G defined by Z(G) = {a ∈ G: xa = ax ∀ x ∈ G}.
 Prove that Z(G) is a subgroup of G.
 Proof: S.K. Mapa, Example: 1, Page-111.
- 11. Let (S,.) be a semigroup. If for $x, y \in S$, $x^2y = y = yx^2$, prove that (S,.) is an abelian group.

Proof: S.K. Mapa, Example: 3, Page-83.

12. Prove that in a groupoid (Z, -) there is no left identity, but 0 is a right identity.

Solution: Let $a, b \in Z$.

Now, $a, b \in Z \Rightarrow a - b \in Z \forall a, b \in Z$.

So, (Z, -) is a groupoid.

Again, $a - 0 = a \forall a \in Z$. So 0 is the right identity in Z with respect to the binary operation '-'.

Now, $b - a = a \Rightarrow b = 2a$. So for different a in Z, \exists different b in Z such that

b - a = a. So b is not the left identity in (Z, -). i.e. (Z, -) has no left identity.

13. Show that the set of complex numbers a + ib (where $i^2 = -1$) for $a^2 + b^2 = 1$ is a group under the multiplication of complex numbers.

Solution: Let $C = \{z = a + ib: a^2 + b^2 = 1 i.e. |z| = 1\}.$

(i) Closure Property: Let $z_1, z_2 \in C$. So $|z_1| = 1, |z_2| = 1$.

Therefore, $z_1 z_2$ is also a complex number and $|z_1 z_2| = |z_1| |z_2|$.

So, $z_1z_2 \in C \forall z_1, z_2 \in C$. i.e. C is closed under the multiplication of complex numbers.

(ii) Associative Property: Multiplication of complex numbers is associative.

(iii) **Identity Property:** 1 = 1 + 0, $i \in C$ and 1, z = z, $1 = z \forall z \in C$.

Therefore, 1 is the multiplicative identity element in C.

(iv) **Inverse Property:** Let z be an arbitrary element in C. So $z \neq 0$ and |z| = 1.

Since $z \neq 0$, so $\frac{1}{z}$ is also a complex number and $\left|\frac{1}{z}\right| = 1$. Therefore, $\frac{1}{z} \in C$. Now, $z \cdot \frac{1}{z} = \frac{1}{z} \cdot z = 1$. Therefore, $\frac{1}{z}$ is the multiplicative inverse of z in C.

Since z is arbitrary, so each element in C has a multiplicative inverse in C. So inverse property is satisfied.

Therefore, the set of complex numbers a + ib for $a^2 + b^2 = 1$ is a group under the multiplication of complex numbers.

14. If b be an element of a group and order of b is 20, find the order of b^{15} .

Solution: $o(b^{15}) = \frac{o(b)}{gcd(20,15)} = \frac{20}{5} = 4.$

15. Give an example of a finite group whose each element other than the identity has the same order and also the order of the group is not a prime number.

Solution: The Klein's 4-group is a finite group of order 4 which is not prime and the order of each non-identity element is two.

16. Prove or disprove: The set D of all odd integers forms a commutative group with respect to the binary operation 'o' defined by aob = a + b - 1 for $a, b \in D$.

Solution:

i) Closure property: Let $a, b \in D$. Since a and b are odd integers, so a + b - 1 is also an odd integer.

Therefore, $aob = a + b - 1 \in D$, $\forall a, b \in D$. i.e. *D* is closed with respect to the binary operation 'o'.

(ii) Associative property: Let $a, b, c \in D$.

Now, ao(boc) = ao(b + c - 1) = a + b + c - 1 - 1 = a + b + c - 2

(aob)oc = (a + b - 1)oc = a + b - 1 + c - 1 = a + b + c - 2

Therefore, $ao(boc) = (aob)oc \quad \forall a, b, c \in D$. So the binary operation 'o' is associative in D.

(iii) Identity property: $1 \in D$.

Now, $ao1 = a + 1 - 1 = a = 1oa \forall a \in D$.

So 1 is the identity element in *D* under the binary operation 'o'.

(iv) **Inverse property:** If $a \in D$, then $2 - a \in D$, since 2 - a is odd as a is odd.

Now, ao(2-a) = a + 2 - a - 1 = 1 and (2-a)oa = 2 - a + a - 1 = 1.

Therefore, for each element $a \in D$, there exists an element 2 - a in D such that

ao(2-a) = (2-a)oa = 1. So 2-a is the inverse of a under the binary operation 'o'.

(v) **Commutativity:** Let $a, b \in D$.

 $aob = a + b - 1 = b + a - 1 = boa \forall a, b \in D.$

Therefore, (D, o) is a commutative group.

17. Give an example of an infinite group whose every element is of finite order.

Solution: Let Z be the set of integers and P(Z) be the power set of Z.

Therefore, P(Z) is an infinite set.

Now, define the binary operation '*' as $A * B = A \Delta B$, $A, B \in P(Z)$.

Then (P(Z),*) be a group under the binary operation '*'. (Proof of this part is discussed in the class).

Here, $\emptyset \in P(Z)$ and \emptyset be the identity element in P(Z) under the operation '*' because $A * \emptyset = A\Delta \emptyset = A = \emptyset\Delta A = \emptyset * A \forall \in P(Z).$ Also $A * A = A\Delta A = \emptyset$. So every element is the self inverse with respect to the operation '*'. i.e. $A^2 = A * A = \emptyset$, $A \neq \emptyset$. Therefore, $o(A) = 2 \forall A (\neq \emptyset) \in P(Z)$ and $o(\emptyset) = 1$. Hence (P(Z),*) is an infinite group whose every element is of finite order.

18. Show that A₃, the set of even permutations of {1,2,3} is a cyclic group with respect to the product of permutations. Find a generator of this cyclic group. Answer with reason.
Solution: The set of even permutations of {1,2,3} is A₃ = {ρ₀, ρ₁, ρ₂} where

$$\rho_0 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, \ \rho_1 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, \ \rho_2 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$$

Find the composition table and prove that the set A_3 , the set of even permutations of {1,2,3}

is a commutative group with respect to the product of permutations.

The order of this group is 3 and since 3 is a prime number, so A_3 is a cyclic group. Since $o(\rho_1) = 3$ and $o(A_3) = 3$, so ρ_1 is a generator of this group.

19. Let $a = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 2 & 4 \end{pmatrix}$. Find the smallest positive integer k such that $a^k = e$ in S_4 .

Solution: S_4 is the symmetric group with respect to the multiplication of permutations of the set {1,2,3,4} and *e* be the identity element in S_4 .

Now,
$$a = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 2 & 4 \end{pmatrix} = (1 & 3 & 2)$$
 which is a cycle of length 3.
So $o(a) = 3$.

Therefore, 3 is the least positive integer such that $a^3 = e$ in S_4 .

20. Define permutation group. Give an example.

Definition: Let $S = \{a_1, a_2, a_3, \dots, a_n\}$ be a finite set.

A bijective mapping $f: S \to S$ is said to be a permutation on S. The number of such bijective mappings is n!. Let S_n be the set of all such permutations. Then the set S_n forms a group with respect to the multiplication of permutations. This group is called permutation group.

Example: Let $S = \{1, 2\}$. Therefore, $S_2 = \{\rho_0, \rho_1\}$ where $\rho_0 = \begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix}$ and $\rho_1 = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$. Consider the composition table and verify that $(S_2, .)$ is a permutation group.