STUDY MATERIAL

Semester -2, Course: CC-4

Topic: Group Theory
(Some important problems with solutions)

1. Let G be a group and H be a non-empty subset of G. Prove that, if H is a subgroup of G, then $H H=H$.

Proof: Let x be an arbitrary element in $H H$.
Now, $x \in H H \Rightarrow x=a b, a, b \in H$.
Since H be a subgroup and $a, b \in H$, so $a b \in H$.
Therefore, $x \in H H \Rightarrow x \in H$. So, $H H \subseteq H$
Again, let h be an arbitrary element in H.
Now, $h=h e \in H H$ since $h \in H, e$ is the identity element of H.
Therefore, $h \in H \Rightarrow h \in H H$. So, $H \subseteq H H$
From (1) and (2), we have $H H=H$.
2. Suppose a group contains element a, b such that $o(a)=4, o(b)=2$ and $a^{3} b=b a$.

Find $o(a b)$.
Solution: $o(a)=4 \Rightarrow a^{4}=e$ and $o(b)=2 \Rightarrow b^{2}=2$.

$$
\begin{aligned}
& \text { Now, } a^{3} b=b a \Rightarrow a^{4} b=a b a \Rightarrow e b=a b a \Rightarrow b=a b a \Rightarrow b b=a b a b \\
& \Rightarrow b^{2}=(a b)^{2} \Rightarrow e=(a b)^{2} .
\end{aligned}
$$

Therefore, $o(a b) \leq 2$.
Since $o(a) \neq o(b)$, so $a \neq b^{-1}\left[\right.$ since $\left.o(b)=o\left(b^{-1}\right)\right]$
i.e. $a b \neq e$. So, $o(a b)>1$. i.e. $1<o(a b) \leq 2$.

Therefore, $o(a b)=2$.
3. Let (G, o) be group. Prove that a non-empty subset H of G forms a subgroup of (G, o) if and only if $a \in H, b \in H \Rightarrow a o b^{-1} \in H$.
Proof: S.K. Mapa, Th.2.11.3.
4. Prove that the semigroup (G, o) is a non-commutative group where $G=\{(a, b) \in Q \times Q: a \neq 0\}$ and the composition ' o ' is defined by $(a, b) o(c, d)=(a c, a d+b)$ for $(a, b),(c, d) \in G . Q$ is the set of rational numbers.
Proof: Since (G, o) is a semigroup, so G is closed under the binary operation ' o ' and ' o ' is associative in the algebraic structure (G, o).
$(1,0) \in G$.
Now, $(a, b) o(1,0)=(a, b)$ and $(1,0) o(a, b)=(a, b) \forall(a, b) \in G$.
Therefore, $(1,0)$ is the identity element in G under the binary composition ' o '.
Let for any element (a, b) in G, \exists an element (c, d) in G such that $(a, b) o(c, d)=(1,0)$
i.e. $(a c, a d+b)=(1,0) \Rightarrow a c=1, a d+b=0$.

Therefore, $c=\frac{1}{a}$ and $d=-\frac{b}{a}$, since $a \neq 0$. So, $(c, d)=\left(\frac{1}{a},-\frac{b}{a}\right) \in Q \times Q$.
Therefore, $(a, b) o\left(\frac{1}{a},-\frac{b}{a}\right)=(1,0)$. Also $\left(\frac{1}{a},-\frac{b}{a}\right) o(a, b)=(1,0)$.
So, $\left(\frac{1}{a},-\frac{b}{a}\right)$ be the inverse of (a, b). i.e. inverse property is satisfied.
Commutativity: Let $(a, b),(c, d) \in G$.
Now, $(a, b) o(c, d)=(a c, a d+b)$ and $(c, d) o(a, b)=(c a, b c+d)$.
But $a b+b \neq b c+d$ in general.
For example, let $(1,2),(3,4) \in G$.
Now, $(1,2) o(3,4)=(3,6)$ and $(3,4) o(1,2)=(3,10)$.
Therefore, $(a, b) o(c, d) \neq(c, d) o(a, b) \forall(a, b),(c, d) \in G$.
5. Let G be an abelian group. Prove that the subset $H=\left\{g \in G: g^{2}=e\right.$ (identity element $\}$ forms a subgroup of G.
Proof: Since $e \in G$ and $e^{2}=e$, so $e \in H$.
Therefore, H is non-empty.
Let a, b be two arbitrary element in H .
So, $a, b \in G$ and $a^{2}=e, b^{2}=e$.
$a, b \in G \Rightarrow a b^{-1} \in G$, since G is a group.
Now, $\left(a b^{-1}\right)^{2}=\left(a b^{-1}\right)\left(a b^{-1}\right)=a\left(b^{-1} a\right) b^{-1}=a\left(a b^{-1}\right) b^{-1}$, since G is abelian $=a^{2}\left(b^{-1}\right)^{2}=a^{2}\left(b^{2}\right)^{-1}=e e^{-1}=e$.
So, $a, b \in H \Rightarrow a b^{-1} \in H$.
Therefore, H is a subgroup of G.
6. Prove that a finite semigroup in which both the cancellation laws hold is a group. Does the theorem hold if the semigroup be infinite?

Proof: S.K. Mapa, Th. 2.7.7.
7. Let P be the set of all real numbers except the integer 1 . Let the operation ' $*$ ' be defined by $a * b=a+b-a b$ for all $a, b \in P$. Show that $(P, *)$ is a group.

Solution: (i) Closure Property: Let $a, b \in P$.
So, a and b are two real numbers and $a \neq 1, b \neq 1$.
Now, $a * b=a+b-a b$ which is a real number and $a+b-a b \neq 1$, because $a+b-a b=1 \Rightarrow b(1-a)=1-a \Rightarrow b=1$, since $a \neq 1$. But $b \neq 1$.

Therefore, $a * b$ is a real number and $a * b \neq 1$. So, $a * b \in P \forall a, b \in P$.
Hence P is closed under t6he binary operation ' $*$ '.
(ii) Associative Property: Let $a, b, c \in P$, where $a, b, c \in R$ and $a \neq 1, b \neq 1, c \neq 1$.

$$
\begin{aligned}
& \text { Now, } a *(b * c)=a *(b+c-b c)=a+b+c-b c-a(c+c-b c) \\
& =a+b+c-b c-a b-a c+a b c . \\
& \begin{aligned}
(a * b) * c=(a+b-b c) * c=a+b-b c+c-(a+b-a b) c \\
=a+b+c-a b-a c-b c+a b c .
\end{aligned}
\end{aligned}
$$

Therefore, $a *(b * c)=(a * b) * c \forall a, b, c \in P$.
So, associative property is satisfied w.r.t. the binary operation '*'.
(iii) Identity Property: $0 \in P$.

Now, $0 * a=0+a-0 . a=a \forall a \in P$.
So 0 is the left identity element in P under the binary operation '*'.
(iv) Inverse Property: Let b be an element in P such that $b * a=0$.

Now, $b * a=0 \Rightarrow b+a-b a=0 \Rightarrow b(1-a)=-a \Rightarrow b=\frac{a}{a-1}$, since $a \neq 1$.
Since $\frac{a}{a-1}$ is a real number as $a \neq 1$ and $\frac{a}{a-1} \neq 1$, so $b=\frac{a}{a-1} \in P$.
Therefore, for any element a in P, \exists an element $\frac{a}{a-1}$ in P such that $\frac{a}{a-1} * a=0$.
So, $\frac{a}{a-1}$ is the left 0 -inverse in P under the binary operation ' $*$ '.
Therefore, $(P, *)$ is a group.
8. Let (G, o) be a group and $a, b \in G$. If $o(a)=3$ and aoboa $^{-1}=b^{2}$, find the order of b if b is not the identity element of G.

Solution: aoboa $^{-1}=b^{2} \Rightarrow a^{2} o b o a^{-2}=a o b^{2} o a^{-1}$

$$
\begin{aligned}
& =\left(a_{0} o a^{-1}\right) o\left(a_{0} a^{-1}\right) \text {, since ' } o \text { ' is associative. } \\
& =b^{2} o b^{2}=b^{4} \\
& \Rightarrow a^{3} o b o a^{-3}=a o b^{4} o a^{-1}=\left(a o b o a^{-1}\right) o\left(a o b o a^{-1}\right) o\left(a o b o a^{-1}\right) o\left(a o b o a^{-1}\right) \\
& =b^{2} o b^{2} o b^{2} o b^{2}=b^{8}
\end{aligned}
$$

or, $b=b^{8} \Rightarrow b^{7}=e$.
Since $b \neq e$ and 7 is prime, so $o(b)=7$.
9. Prove that the union of two subgroup H, K of a group $(G, *)$ forms a subgroup if and only if either $H \subset K$ or $K \subset H$.

Proof: S.K. Mapa, Th. 2.11.6.
10. Let G be a group. Let $Z(G)$ be a subset of G defined by $Z(G)=\{a \in G: x a=a x \forall x \in G\}$.

Prove that $Z(G)$ is a subgroup of G.
Proof: S.K. Mapa, Example: 1, Page-111.
11. Let $(S,$.$) be a semigroup. If for x, y \in S, x^{2} y=y=y x^{2}$, prove that $(S,$.$) is an abelian$ group.

Proof: S.K. Mapa, Example: 3, Page-83.
12. Prove that in a groupoid $(Z,-)$ there is no left identity, but 0 is a right identity.

Solution: Let $a, b \in Z$.
Now, $a, b \in Z \Rightarrow a-b \in Z \forall a, b \in Z$.
So, $(Z,-)$ is a groupoid.
Again, $a-0=a \forall a \in Z$. So 0 is the right identity in Z with respect to the binary operation '-'.
Now, $b-a=a \Rightarrow b=2 a$. So for different a in Z, \exists different b in Z such that $b-a=a$. So b is not the left identity in $(Z,-)$.i.e. $(Z,-)$ has no left identity.
13. Show that the set of complex numbers $a+i b$ (where $i^{2}=-1$) for $a^{2}+b^{2}=1$ is a group under the multiplication of complex numbers.

Solution: Let $C=\left\{z=a+i b: a^{2}+b^{2}=1\right.$ i.e. $\left.|z|=1\right\}$.
(i) Closure Property: Let $z_{1}, z_{2} \in C$. So $\left|z_{1}\right|=1,\left|z_{2}\right|=1$.

Therefore, $z_{1} z_{2}$ is also a complex number and $\left|z_{1} z_{2}\right|=\left|z_{1}\right|\left|z_{2}\right|$.
So, $z_{1} z_{2} \in C \forall z_{1}, z_{2} \in C$. i.e. C is closed under the multiplication of complex numbers.
(ii) Associative Property: Multiplication of complex numbers is associative.
(iii) Identity Property: $1=1+0 . i \in C$ and $1 . z=z .1=z \forall z \in C$.

Therefore, 1 is the multiplicative identity element in C.
(iv) Inverse Property: Let z be an arbitrary element in C. So $z \neq 0$ and $|z|=1$.

Since $z \neq 0$, so $\frac{1}{z}$ is also a complex number and $\left|\frac{1}{z}\right|=1$. Therefore, $\frac{1}{z} \in C$.
Now, $z \cdot \frac{1}{z}=\frac{1}{z} \cdot z=1$.

Therefore, $\frac{1}{z}$ is the multiplicative inverse of z in C.
Since z is arbitrary, so each element in C has a multiplicative inverse in C. So inverse property is satisfied.
Therefore, the set of complex numbers $a+i b$ for $a^{2}+b^{2}=1$ is a group under the multiplication of complex numbers.
14. If b be an element of a group and order of b is 20 , find the order of b^{15}.

Solution: $o\left(b^{15}\right)=\frac{o(b)}{g c d(20,15)}=\frac{20}{5}=4$.
15. Give an example of a finite group whose each element other than the identity has the same order and also the order of the group is not a prime number.
Solution: The Klein's 4 -group is a finite group of order 4 which is not prime and the order of each non-identity element is two.
16. Prove or disprove: The set D of all odd integers forms a commutative group with respect to the binary operation ' o ' defined by $a o b=a+b-1$ for $a, b \in D$.

Solution:

i) Closure property: Let $a, b \in D$. Since a and b are odd integers, so $a+b-1$ is also an odd integer.
Therefore, $a o b=a+b-1 \in D, \forall a, b \in D$. i.e. D is closed with respect to the binary operation ' o '.
(ii) Associative property: Let $a, b, c \in D$.

Now, $a o(b o c)=a o(b+c-1)=a+b+c-1-1=a+b+c-2$
$(a o b) o c=(a+b-1) o c=a+b-1+c-1=a+b+c-2$
Therefore, $a o(b o c)=(a o b) o c \quad \forall a, b, c \in D$. So the binary operation ' o ' is associative in D .
(iii) Identity property: $1 \in D$.

Now, $a 01=a+1-1=a=1 o a \forall a \in D$.
So 1 is the identity element in D under the binary operation ' o '.
(iv) Inverse property: If $a \in D$, then $2-a \in D$, since $2-a$ is odd as a is odd.

Now, $a o(2-a)=a+2-a-1=1$ and $(2-a) o a=2-a+a-1=1$.
Therefore, for each element $a \in D$, there exists an element $2-a$ in D such that $a o(2-a)=(2-a) o a=1$. So $2-a$ is the inverse of a under the binary operation ' o '.
(v) Commutativity: Let $a, b \in D$.
$a o b=a+b-1=b+a-1=$ boa $\forall a, b \in D$.

Therefore, (D, o) is a commutative group.
17. Give an example of an infinite group whose every element is of finite order.

Solution: Let Z be the set of integers and $P(Z)$ be the power set of Z.
Therefore, $P(Z)$ is an infinite set.
Now, define the binary operation ' $*$ ' as $A * B=A \Delta B, A, B \in P(Z)$.
Then $(P(Z), *)$ be a group under the binary operation ' $*$ '. (Proof of this part is discussed in the class).

Here, $\emptyset \in P(Z)$ and \emptyset be the identity element in $P(Z)$ under the operation '*' because
$A * \emptyset=A \Delta \emptyset=A=\emptyset \Delta A=\emptyset * A \forall \in P(Z)$.
Also $A * A=A \Delta A=\emptyset$. So every element is the self inverse with respect to the operation ' $*$ '.
i.e. $A^{2}=A * A=\emptyset, A \neq \emptyset$.

Therefore, $o(A)=2 \forall A(\neq \varnothing) \in P(Z)$ and $o(\varnothing)=1$.
Hence $(P(Z), *)$ is an infinite group whose every element is of finite order.
18. Show that A_{3}, the set of even permutations of $\{1,2,3\}$ is a cyclic group with respect to the product of permutations. Find a generator of this cyclic group. Answer with reason.
Solution: The set of even permutations of $\{1,2,3\}$ is $A_{3}=\left\{\rho_{0}, \rho_{1}, \rho_{2}\right\}$ where

$$
\rho_{0}=\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 2 & 3
\end{array}\right), \rho_{1}=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1
\end{array}\right), \rho_{2}=\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 1 & 2
\end{array}\right) .
$$

Find the composition table and prove that the set A_{3}, the set of even permutations of $\{1,2,3\}$ is a commutative group with respect to the product of permutations.
The order of this group is 3 and since 3 is a prime number, so A_{3} is a cyclic group.
Since $o\left(\rho_{1}\right)=3$ and $o\left(A_{3}\right)=3$, so ρ_{1} is a generator of this group.
19. Let $a=\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 3 & 1 & 2 & 4\end{array}\right)$. Find the smallest positive integer k such that $a^{k}=e$ in S_{4}.

Solution: S_{4} is the symmetric group with respect to the multiplication of permutations of the set $\{1,2,3,4\}$ and e be the identity element in S_{4}.
Now, $a=\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 3 & 1 & 2 & 4\end{array}\right)=\left(\begin{array}{lll}1 & 3 & 2\end{array}\right)$ which is a cycle of length 3 .
So $o(a)=3$.
Therefore, 3 is the least positive integer such that $a^{3}=e$ in S_{4}.
20. Define permutation group. Give an example.

Definition: Let $S=\left\{a_{1}, a_{2}, a_{3}, \ldots \ldots \ldots, a_{n}\right\}$ be a finite set.
A bijective mapping $f: S \rightarrow S$ is said to be a permutation on S. The number of such bijective mappings is $n!$. Let S_{n} be the set of all such permutations. Then the set S_{n} forms a group with respect to the multiplication of permutations. This group is called permutation group.

Example: Let $S=\{1,2\}$. Therefore, $S_{2}=\left\{\rho_{0}, \rho_{1}\right\}$ where $\rho_{0}=\left(\begin{array}{ll}1 & 2 \\ 1 & 2\end{array}\right)$ and $\rho_{1}=\left(\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right)$. Consider the composition table and verify that $\left(S_{2},.\right)$ is a permutation group.

